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ABSTRACT
Hyperspectral unmixing, by extracting the fractional abun-
dances of endmembers from the hyperspectral image (HSI),
has raised wide attention in recent years. In last decade, non-
negative matrix factorization (NMF) have been intensively
studied for solving spectral unmixing problem. In this pa-
per, we extend the multilayer NMF method by incorporating
the L1/4 sparsity constraint, named L1/4-MLNMF. The L1/4

regularizer induces sparsity effectively. We propose an itera-
tive estimation algorithm for L1/4-MLNMF, which provides
sparser and more accurate results than MLNMF. Experiments
on a synthetic dataset and a real dataset show that the prposed
method outperforms the similar competitors.

Index Terms— Hyperspectral unmixing, hyperspectral
image, nonnegative matrix factorization.

1. INTRODUCTION

Hyperspectral unmixing (HSU) is an important technique for
remote sensing hyperspectral data exploitation. The task of
HSU is to synchronously estimate the pure spectral signa-
tures, called endmembers, and their corresponding fractional-
s, called abundance, for each pixel of the hyperspectral image.
Thus, the spectral of pixels is resolved into a weighted com-
bination of the endmembers. HSU is widely applied for other
hyperspectral intervals. According to the fundamental mix-
ing models, the solutions of hyperspectral image unmixing
can be separated into two types: non-linear model (NLMM)
and linear model (LMM). Since the computational complexi-
ty of NLMM methods is usually high [1], the LMM methods
are more practical in real applications [2], [3].

According to the employed searching strategy, LMM
methods can be further categorized into geometrical, statis-
tical and sparse regression based approaches. Among these
methods, nonnegative matrix factorization (NMF) is inten-
sively studied and widely used to unmix hyperspectral images
[4]. As a natural solution to the nonnegativity constraint on
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LMM, NMF decomposes the mixed data into two nonnega-
tive matrices. However, some NMF-based unmixing methods
usually leads to an NP-hard optimization problem that cannot
be solved in practice [5].

In this paper, a novel method called L1/4 sparsity-
constrained multilayer NMF (L1/4-MLNMF) is proposed
to improved the performance of NMF methods for spectral
unmixing. Compared to the above mentioned three kinds of
methods, L1/4-MLNMF is much more different.The main
contributions of this method are claimed as follow.

1) An inspiring and efficient unmixing structure is applied
to extend the NMF method. With multilayer structure of ML-
NMF [6], this method considers spectral signatures matrix as
the product of a set of sparse matrices. It not only uses a
creative model in practice, but also provides an effective ex-
tension for NMF-based unmixing methods.

2) An effective objective function is proposed in a novel
point of view. In each layer of this method, the sparsity con-
straints on endmembers matrix is added to the cost function.
Since the L1/4 regularizer induces sparsity effectively[7], the
proposed method provides sparser and more accurate results
than MLNMF.

The remainder of this paper is organized as follows.Section
II elaborates the proposed algorithm. Section III and IV sum-
marizes the experiments and results on synthetic dataset and
real dataset. Finally, we discuss and conclude this paper in
Section V.

2. METHODOLOGY

This section details the proposed L1/4-MLNMF method.
First, the cost function of NMF method is introduced. Then,
the multilayer NMF method is given. In the end, the objec-
tive function and iterative estimation algorithm for proposed
L1/4-MLNMF method are described.

2.1. Nonnegative Matrix Factorization for Linear Model

The linear mixture model (LMM) assumes that each pixel
spectrum in any given spectral band can be linearly combined
by the endmember spectrums, which means for each pixel the



LMM can be mathematically expressed as

xj =

q∑
i=1

aijsi + nj , (1)

where xj is the measured value of the reflectivity for a mixed
pixel on the spectral band j; aij is the reflectivity of the end-
member i on the band j; si is the abundance values of end-
member i in this mixed pixel; nj is the process nose, and q is
the number of endmembers.

According to the form of nonnegative matrix factorization
(NMF) mentioned above,(1) can be generally presented as

X ≈ AS,

s.t.S ≥ 0,1T
PS = 1T

n .
(2)

where X ≡ [y1, ..., yn] ∈ Rd×n is the hyperspectral image
matrix with n pixels and d spectral bands; A ≡ [m1, ...,mp] ∈
Rd×p is the mixing matrix with p endmembers; mi is the ith
endmember signature; S ≡ [s1, ..., sn] ∈ Rp×n is the abun-
dance matrix; si denotes the endmember fractions, for pixels
i = 1, ..., n ; S ≥ 0 is the nonnegative abundance constraint
for the component-wise method;1T

PS = 1T
n is the abun-

dance sum to one constraint for the physics characteristic of
abundance vector. The cost function used for solving NMF
problem is formulated as

ONMF =
1

2
‖ X−AS ‖2F , (3)

This cost function in Eq. (3) should also be minimized
under the constraints in Eq. (2). Furthermore, sparsity con-
straints on the abundance fractions matrix can be added to
improve the performance of NMF algorithm, such as L1/2

regularizer [8]. The cost function under this regularizer is
given as

OL1/2−NMF =
1

2
‖ X−AS ‖2F +α ‖ S ‖1/2, (4)

where α is a regularization parameter to control the effect of
sparsity constraint [7].

2.2. MLNMF Method

To improve the performance of NMF-based methods for spec-
tral unmixing, this paper introduced MLNMF method. MLN-
MF has been firstly proposed in in signal processing to solve
blind source separation problem [9]. Then, it has been initial-
ly applied and improved in for spectral unmixing problem [6],
where multilayer structure is used to decompose the observa-
tion matrix shown in Fig.1. In the first layer, basic decom-
position results in A1 and S1. Then in the second layer, the
obtained S1 is decomposed into A2 and S2. Above process
will be repeated until the maximum number of layers L. The

mathematical expression of the multilayer structure is formu-
lated as

X = A1S1,S1 = A2S2, . . . ,SL−1 = ALSL, (5)

A = A1A2 . . .AL =

L∏
l=1

Al,S = SL, (6)

where the SL resulted in the last layer is the estimated abun-
dance fraction matrix for spectral unmixing and the product
of A from all layers is the final mixing matrix.
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Fig. 1. MLNMF decomposition.

2.3. Proposed L1/4-MLNMF Method

In this paper, in order to improve the performance of MLNM-
F method for spectral unmixing, L1/4-MLNMF is proposed.
The sparsity constraints for both spectral signatures and abun-
dance fractions are used in the proposed method. The sparsity
constraint on abundance fractions has been already discussed
thoroughly in [7]. Then the MLNMF method in [6] has al-
so attempted to add sparsity constraint on spectral signatures
matrix, the result of which are not very satisfactory. Note that
sometimes L1/4 regularizer works better than L1/2 regular-
izer. Considering the mentioned constraints, L1/4-MLNMF
cost function for the lth layer is defined as

OL1/4−MLNMF =
1

2
‖Xl−AlSl ‖2F +αA ‖Al ‖1/4+αS ‖Sl ‖1/2.

(7)
To increase the effect of sparsity constraints on spectral

signatures and abundance fractions, we set αA and αS by

αA = α0e
−t
τ , αS = 2αA, (8)

where t is the iteration number; α0 and τ are constants to
control the impact of constraints [10].

Referring to the update rules mentioned in [7], we can
calculate Eq.(7) by replacing the terms related to L1/2 con-
straints. The obtained multiplicative update rules for L1/4-
MLNMF problem are defined as

Al ← Al · ∗(XlS
T
l ) · /(AlSlS

T
l +

1

2
αAA

−3/4
l ), (9)



Sl ← Sl · ∗(AT
l Xl) · /(AT

l AlSl +
1

2
αSS

−1/2
l ), (10)

where (·)T is the transpose of a matrix and the constraints in
Eq.(2) are still considered in above equations. Then we set
the stopping criteria as

‖ OL1/4−MLNMF
New
−OL1/4−MLNMF

Old
‖< ε, (11)

where ε is the error which is set to 10−4 in our experi-
ments.And another important setting is using VCA as initial-
ization, which usually gives robust results [11]. In summary,
the L1/4-MLNMF algorithm is shown in Algorithm 1.

Algorithm 1 L1/4-MLNMF Algorithm
Input: Hyperspectral image matrix X; Parameters: α0, τ , ε,

L, Tmax;
1: X1 = X
2: for l = 1 to L do
3: Initialize Al and Sl using VCA in the first layer and

random initialization for other layers
4: for t = 1 to Tmax do
5: update Al using Eq.(9)
6: update Sl using Eq.(10)
7: if ε in Eq.(11) then
8: break
9: end if

10: end for
11: Xl+1 = Sl

12: end for
13: A =

∏L
l=1 Al and S = SL in Eq.(6)

Output: Estimated spectral signatures A and abundance
fractions S

3. EXPERIMENTS AND RESULTS

In this section, the proposed L1/4-MLNMF method is tested
by synthetic dataset and real dataset. First, the evaluation of
the proposed method and quantitative results are shown for
synthetic dataset. Then, the visual results are given for real
dataset.

3.1. Synthetic Dataset

In synthetic dataset experiment, spectral signatures from US-
GS library is used to generate simulated data. Six signatures
of this library are chosen randomly and shown in Fig.2. Then
the produre in has been used to creat a 58×58-sized synthetic
images without pure pixels. Finally, white noise is added into
the data to simulate the sensor noise.

For evaluation purpose, two different measures is used:
root mean square of spectral angle distance(rmsSAD) and
abundance angle distance (rmsAAD).The rmsSAD measures
the simularity between original spectral signatures (mi) and

Fig. 2. Six signatures chosen from library.

the estimated ones (m̂i). The rmsAAD measures the sim-
ularity between original abundance fractions (ai) and the
estimated ones (âi). They are given by

rmsSAD = (
1

P

P∑
i=1

(cos−1(
mT

i m̂i

‖mi ‖‖ m̂i ‖
))2)1/2, (12)

rmsAAD = (
1

N

N∑
i=1

(cos−1(
aTi âi

‖ ai ‖‖ âi ‖
))2)1/2. (13)

In this experiment, parameters are selected as: α0 = 0.1,
τ = 25, L = 10 and Tmax = 400, which are selected to get
the best result. Estimated spectral signatures and the original
ones are obtained in Fig.3 when SNR is 30dB.
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Fig. 3. Estimated spectral signatures in blue lines and the
original ones in yellow lines using L1/4-MLNMF.

Table.1 shows the quantitative results of the proposed
method compared to VCA [12], L1/2-NMF [7], MLNMF [6]
methods in terms of rmsSAD and rmsAAD for 20 runs. As
we can seen in this table, our proposed method outperforms
the other methods.



Table 1. The rmsSAD and rmsAAD comparison for methods
SNR(dB) Index VCA L1/2-NMF MLNMF L1/4-MLNMF

20 rmsSAD 0.1765 0.1138 0.0630 0.0490
rmsAAD 0.6128 0.4610 0.3094 0.2737

30 rmsSAD 0.1826 0.1044 0.0509 0.0446
rmsAAD 0.4613 0.3934 0.2876 0.2410

40 rmsSAD 0.2108 0.0976 0.0454 0.0412
rmsAAD 0.5097 0.2981 0.1985 0.2144

3.2. Real Dataset

The Jasper Ridge dataset is a popular hyperspectral data used
in NMF-based methods. In this paper, a 100× 100-pixel sub-
scene of this dataset is used as in Fig.4. After removing water
vapor and atmosphere absorption bands, we remain 198 chan-
nels to use in this experiment.And there are four endmembers
latent in this dataset used as the true signatures.

Fig. 4. OA curves on Salinas Scene for different band selec-
tion methods, in which m is set from 3 to 30 each 3 intervals.

The parameters are set as α0 = 0.1, τ = 25, L = 10
and Tmax = 400 in this experiment. The abundance frac-
tions maps and signatures extracted by proposed method are
demonstrated in Fig.5. And estimated signatures also have
been compared with corresponding true signatures from US-
GS library in this figure. As it can be seen in these com-
parisons, the proposed method performances well for spectral
unmixing.
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Fig. 5. The abundance fractions maps and signatures extract-
ed by L1/4-MLNMF method.

4. CONCLUSION

In this paper, we present a L1/4 sparsity-constrained multi-
layer nonnegative matrix factorization method for spectral un-
mixing. We apply multilayer structure of MLNMF to extend
the NMF methods. Sparsity constraints for both abundance
fractions and spectral signatures are added in our method to
improve the results. The proposed method is tested by syn-
thetic and real datasets. Results and comparisons show that
the proposed algorithm excels the other methods.

5. ACKNOWLEDGEMENT

This work was supported by the National Key R&D Program
of China under Grant 2018YFB1107403, National Natural
Science Foundation of China under Grant U1864204 and
61773316, State Key Program of National Natural Science
Foundation of China under Grant 61632018Natural Science
Foundation of Shaanxi Province under Grant 2018KJXX-024,
and Project of Special Zone for National Defense Science and
Technology Innovation.

References
[1] Danfeng Hong, Naoto Yokoya, Jocelyn Chanussot, and Xiao Xiang

Zhu, “An augmented linear mixing model to address spectral variability
for hyperspectral unmixing,” IEEE Transactions on Image Processing,
vol. 28, no. 4, pp. 1923–1938, 2019.

[2] Qi Wang, Fahong Zhang, and Xuelong Li, “Optimal clustering frame-
work for hyperspectral band selection,” IEEE Transactions on Geo-
science and Remote Sensing, , no. 99, pp. 1–13, 2018.

[3] Jun Yu, Zhenzhong Kuang, Baopeng Zhang, Wei Zhang, Dan Lin, and
Jianping Fan, “Leveraging content sensitiveness and user trustworthi-
ness to recommend fine-grained privacy settings for social image shar-
ing,” IEEE Transactions on Information Forensics and Security, vol.
13, no. 5, pp. 1317–1332, 2018.

[4] Qi Wang, Xiang He, and Xuelong Li, “Locality and structure regu-
larized low rank representation for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, , no. 99, pp.
1–13, 2018.

[5] Ricardo Augusto Borsoi, Tales Imbiriba, José Carlos Moreira
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